# Update of New Theory of Flight

Here is a short update of the New Theory of Flight as concerns the slip/small friction boundary condition which is instrumental, with reference to the last sequence of posts:

1. The boundary layer of a wing initialised as laminar at stagnation point at leading edge, effectively turns into (acts like) slip with very small skin friction.
2. This is because transition to a turbulent boundray layer on the leading edge is blocked by wall and damped by acceleration.
3. The flow once turned into slip on leading edge stays with slip, because transition to turbulent boundary layer is not triggered by slip (no shear).
4. The net is that the flow around a wing effectively acts as having slip, because transition to a turbulent boundray layer is not triggered by artificial device on leading edge.
5. The large skin friction from flat plate experiments with artificial tripping should not be used for a wing. If used they give much too big skin friction drag.
6. The new flight theory builds on slip. With no-slip (laminar or turbulent) the flow separates on crest destroying the functionality of the wing.
7. We now can see slip as a limit form of a laminar boundray layer with very small skin friction (without the negative aspect of no-slip of 6.), not as a limit form of a turbulent boundary layer with large skin friction, because of “by-pass” as discussed in previous post.
8. The correct way to add skin friction to DFS is by the friction coefficient of laminar flow, which is an order of magnitude smaller than that of a turbulent bounder layer (used in RANS et cet).
9. Comparison between experiments for a wing with and without tripping (and other experiments) show skin friction coefficient of size 0.002-3, much bigger than laminar skin friction as shown in this plot:

## On the dream of a “laminar wing”

Without tripping the flow around a common wing under pre-stall conditions thus effectively satisfies a slip boundary condition with the very small friction of a laminar boundary layer, and then without the destructive crest separation from vanishing normal pressure in a laminar boundary layer.

This means that already a common wing realises the dream of very small skin friction drag associated with a “laminar wing” as a wing with a laminar boundary layer.  This explains why the search for further skin friction reduction by e g blowing or suction has not been successful.  To reduce something which is already very small can be very difficult.